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In this supplementary material, we include more details, results, and discus-
sions about the experiments. Specifically, we first provide the implementation
details of ourmethod in Sec. 1. Thenwe expand the evaluation on embroidery
customization in Sec. 2, including discussion on metrics, more qualitative
comparisons, ablation studies, and computational cost. Subsequently, we
explore the potential of our customized embroideries in transforming real-
world workflows in Sec. 3, in regard to the usage for preview and presale,
fabrication acceleration, as well as other virtual applications. To verify the
capability of our method in decoupling style and content, we conduct ex-
periments on three more visual attribute transfer tasks in Sec. 4, including
photo-to-artwork in Sec. 4.1, sketch-to-color in Sec. 4.2, and appearance
transfer in Sec. 4.3. Finally, we provide the prompts used for embroidery
generation in Sec. 5.
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1 IMPLEMENTATION DETAILS
We implement our method with SDXL V1.0 and generate images
in 1024 × 1024. The rank of LoRA in our experiments is set to 32.
We adopt Adam as the optimizer and set the learning rate to 1e-4.
For contrastive learning, we adjust the weight for each loss term
instead of tuning the learning rate, simply for convenience. We set
the weight for complementary data as 0.1 to avoid deterioration
in embroidery style from noisy generated data. The weight for
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contrastive loss is set to 0.001 due to its fast convergence. We train
400 steps for the first stage and 200 steps for the second stage.

2 EVALUATION ON EMBROIDERY CUSTOMIZATION
In this section, we delve deeper into our evaluation on embroidery
customization. Importantly, we first discuss the strengths and limita-
tions of the metrics, which underscores the necessity of conducting
user studies to complement the quantitative evaluation. Then, we
present qualitative comparisons on additional reference embroidery
images, followed by ablation studies on block selection, color correc-
tion, and multi-style training. Finally, we report the computational
cost of our method and compare it with existing approaches.

2.1 Metrics
HRDF. We compare the compliance of the generated image’s em-

broidery style to the reference with their High-Frequency Ratio
Difference (HFRD). To mitigate the impact of foreground size varia-
tions, we segment each image into 16 patches of 256 × 256 pixels.
Subsequently, we discard any patches where over 50% of the pixels
are near white in color. For the remaining patches, we first con-
vert them to grayscale images and then apply FFT (Fast Fourier
Transform) to obtain their spectral representation. To distinguish
between low-frequency and high-frequency components, we utilize
a central circular mask. The high-frequency region is defined as the
portion of the spectrum where the distance from its center exceeds
0.3 times the edge length. We compute the average high-frequency
energy ratio across all patches and report its absolute difference
from the corresponding value of the reference.

LPIPS. We use LPIPS to assess the preservation of design content.
For each generated embroidery image, we first conduct Gaussian
blur with kernel size 15 to alleviate the influence of embroidery
texture, and then compute its LPIPS with the input design image.

Discussion. We utilize HFRD and LPIPS to assess image-based
customization outcomes. However, given the subtle variations and
intricate structures inherent to embroidery features, HFRD occasion-
ally fails to provide an accurate reflection of the objective. This can
be observed in Fig. 1, where one positive example and one negative
example are presented. Notably, generated embroideries that are
quite dissimilar to the reference may still exhibit very low HFRD
values. Moreover, when comparing two embroidery generations
in terms of their design content preservation using LPIPS, the one
with better color compliance might receive a worse score due to the
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Fig. 1. Analysis on HRDF and LPIPS. For each metric, we show one positive example that align with the visual quality (valid), and one negative example where
the visually superior generation yields a worse quantitative score (invalid).

Fig. 2. Ablation on color correction and multi-style training. (a) Color cor-
rection on sequins leads to noticeable misalignment (Row 1, Column 4).
(b) Training a single EmoLoRA on two embroidery styles results in bead
deformation and unintended fusion of pearls and sequins.

influence of embroidery features. Due to the noise in these metrics,
the quantitative results fail to distinguish between our method, DB-
LoRA, and B-LoRA. Therefore, we rely on more direct assessments
through user studies.

2.2 MoreQualitative Comparison
In Fig. 3, we show visual comparisons on more reference embroi-
deries, to further illustrate the generalization capability of our
method.
Moreover, we conduct qualitative comparisons with Attention

Distillation [Zhou et al. 2025] in both image-based and text-based
generation, and with Analogist [Gu et al. 2024] in image-based gen-
eration, as shown in Fig. 4. Attention Distillation leverages attention
features from pretrained diffusion models without explicit disentan-
glement for fine-grained styles. As a result, it tends to treat overall
appearance—including color and texture—as transferable style, but
still fails to preserve clear structures for beads, pearls, and sequins.
In contrast, Analogist fails to apply embroidery-like textures and
does not maintain the structural consistency of the input design.

2.3 Ablation Study on Color Correction
We conduct ablation studies to examine the effect of the color cor-
rection module. For flat and chenille embroideries, where bound-
ary alignment is particularly important, all methods employing
ControlNet during inference (Ours, DB-LoRA [Ruiz et al. 2023], B-
LoRA [Frenkel et al. 2025], and InstantStyle [Wang et al. 2024]) are
equippedwith color correction. Tomitigate the color bias introduced
by ControlNet, we convert the generated images into LAB space
and substitute their AB channels with those of the corresponding
design images. For sequin and bead embroideries, however, the gen-
eration process inherently alters the internal structure, and direct
AB-channel replacement would cause unnatural artifacts (Fig. 2 (a)),
so color correction is not applied. We present quantitative results
with and without color correction in Tab. 1. Without color correc-
tion, our method still achieves stronger color fidelity. Note that
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Fig. 3. More comparisons on one-shot embroidery customization. (Please zoom-in to see the detailed textures.)

Table 1. Ablation on color correction. The best results are highlighted in bold, and the second-best are underlined. We employ Histogram-Loss and LPIPS to
quantitatively evaluate the preservation of design color and content, respectively.

Metric Ours DB-LoRA B-LoRA InstantStyle PairCustomization StyleID RB-Modulation
Histogram-Loss↓ (w/o) 44.00 45.18 46.57 46.11 43.99 45.75 48.87
Histogram-Loss↓ (w/) 26.59 28.62 30.57 32.23 43.99 45.75 48.87
LPIPS↓ (w/o) 18.73 19.40 21.10 13.87 22.14 21.96 65.18
LPIPS↓ (w/) 14.37 14.54 14.92 7.72 22.14 21.96 65.18

PairCustomization and InstantStyle preserves the design content
with minimal embroidery features.

2.4 Ablation Study on Multi-Style Training
Distinct styles like embroidery and color are often encoded by differ-
ent model weights. Focusing on one style may limit the model’s abil-
ity to represent others. Moreover, high intra-class variation within

embroidery styles can hinder convergence and lead to style fusion.
For instance, as shown in Fig. 2 (b), training a single EmoLoRA on
two embroidery styles results in bead deformation and an unin-
tended fusion of pearls and sequins. This observation highlights the
challenge of multi-style training and suggests that separate mod-
els or explicit disentanglement configurations may be necessary to
faithfully preserve distinct style patterns.
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Fig. 4. Qualitative comparison with Attention Distillation [Zhou et al. 2025] in both image-based and text-based generation, and with Analogist [Gu et al.
2024] in image-based generation.

Table 2. Comparison on computational cost.

Metric Ours DB-LoRA B-LoRA InstantStyle PairCustomization StyleID RB-Modulation Attention Distillation
Training-VRAM (GB) 20.96 9.78 12.11 - 11.33 - - -
Training-Time (s) 1220 106 310 - 294 - - -
Inference-VRAM (GB) 13.97 14.00 13.94 16.76 14.94 18.28 19.10 3.65
Inference-Time (s) 7.63 8.32 7.16 11.25 44.22 16.35 65.93 16.62

2.5 Ablation Study on Block Selection
We conduct more ablation studies on our block selection. From
all blocks labeled 1-11 in the SDXL base model, we choose Block-
2,3,7,8 as our final model. To verify if this is the best choice, we
conduct experiments on four reference embroideries, as shown in
Fig. 5. Firstly, we try four individual blocks with the lowest average
cosine similarity. Block-2 and Block-3 are from down_blocks, demon-
strating minimal structural features. Block-7 and Block-8 are from

up_blocks and capture different structures, yet still barely percepti-
ble. Using two blocks, Blcoks-2,8, Blocks-2,3 or Blocks-7,8, captures
more structural features than using a single block, while none of
them encompass complete sequins or pearls. Selecting blocks with
higher average cosine similarity, Blocks-4,5, demonstrates minimal
embroidery style. Using down_blocks only, Blocks-1,2,3,4, shows
no structural features, while using up_blocks only, Blocks-7,8,9,10,
misses important details. Combining down_blocks and up_blocks
but with higher average cosine similarity, Blocks-1,4,6,9, indeed fails
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Fig. 5. Ablation study on block selection. Pink flower design (Row 2, Column 1) © Vecteezy.
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Fig. 6. Statistics of user preference.

to capture embroidery structures. Usingmore blocks than ours while
missing one of our blocks, Blocks-1,2,4,5,7,8 or Blocks-2,3,4,5,8,10,
also misses important structural features. Using more blocks includ-
ing all of our blocks also has worse integration with input design
content due to entanglement with the reference content. Blocks-
2,3,4,5,7,8 has worse results than All Blocks because it squeezes more
structure features into the semantic blocks (two blocks out of six in
total) and thus has more severe entanglement issues. To summarize,

using the four selected blocks with the lowest average cosine simi-
larity in our method achieves the best embroidery customization
results.

2.6 Computational Cost
We compare the training and inference costs of different methods on
an NVIDIA RTX 4090 GPU, as reported in Table 2. While our method
requires extended training to learn fine-grained styles, it enables
efficient inference without relying on inversion or optimization
during test time.
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Fig. 7. User Study Interfaces. Pink flower design © Vecteezy.

3 TRANSFORMATION TO EMBROIDERY WORKFLOWS
In this section, we investigate the potential of the customized em-
broideries in transforming real-world embroidery workflows. To
achieve this, we first conduct user studies on applications in preview
and presale, bridging the communication between producers and
customers. Then we explore the usage of the customized embroi-
deries in fabrication with the Wilcom EmbroideryStudio. Finally,

we discuss other potential of our method in generating high-quality
embroidery and design images.

3.1 Preview and Presale
To investigate whether embroidery customization can facilitate
presale, thereby improving the alignment between production and
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Fig. 8. Reference embroidery style, input design image, our generated em-
broidery and the corresponding digitized embroidery result. The digitizing
process is much more straight-forward with our generated embroidery than
with the input design image. Pink flower design © Vecteezy.

sales and alleviating inventory pressure, we conduct several user
studies.

Firstly, we evaluate whether the generated embroideries are suffi-
ciently realistic. To achieve this, we generate 50 high-quality embroi-
deries with our method in any style with either image or text inputs,
and collect 50 real embroideries. Then we build a questionnaire for
each user with 15 real and 15 generated random sampled from the
prepared set. The interface is as shown in Fig. 7 (b), we ask the user
to choose whether they think the image is real or generated.

Additionally, we choose eight reference embroideries in different
styles and seven design images to generate customized embroideries
for preview and presale, with the results shown in Fig. 9. Then, we
design a second questionnaire as illustrated in Fig. 7 (c), where
users are first presented with an interface displaying a design image
alongside eight reference embroidery styles and asked to select their
top three preferences in order. Subsequently, the customized results
are shown, and users are asked to make their selections again. Each
user answers to seven pairs of w/o Preview and w/ Preview questions.

We collect answers from 20 users for the these two questionnaires,
all with no specialized knowledge of embroidery. Before answering
questions, we show them 10 real embroidery patches in different
styles, and then ask them to answer these two questionnaires in
order. Note that the questions in each questionnaire are in random
order and these two questionnaires share no images in common.

In the first questionnaire, 67.3% of the 300 votes for our generated
images mistakenly identified them as real embroideries, while 19.7%
of the 300 votes for real embroideries were misidentified as gen-
erated. These results suggest two key insights: (1) the generation
quality of our method is convincingly realistic; and (2) users were
making informed judgments rather than random guesses.

For the second questionnaire, we assign scores to the results: 3
points for the most preferred, 2 for the second, and 1 for the third.
The final score statistics are summarized in Fig. 6. The Embroidery
IDs and Design IDs are aligned with the ones in Fig. 9 and Fig. 7.
We present the results by categorizing the embroideries into simple
and complex sets, and compare the scores between w/o Preview and
w/ Preview. The heatmaps display the total scores of customized
results for each combination of reference embroidery and design.
The histograms show the total score summed across all designs for
each reference embroidery.

From the results in the histograms, the relative ranking of the four
embroidery styles in the simple group remains consistent, suggest-
ing that the presence or absence of a preview makes little difference.
In contrast, for the complex embroidery group, the relative prefer-
ences shifted significantly: the style that received the lowest score
before previewing became the highest-rated after the preview was
provided. This result can significantly influence producers’ decisions
on which style to prioritize for production.
This phenomenon is similarly evident in the heatmaps. We an-

alyze the data from both the customer and producer perspectives.
From the customer perspective, we calculated the average propor-
tion of changes across all participants in their top-1, 2, 3 selections:
72.1%, 58.2%, and 47.1%. For example, 58.2% means that when given
the preview, on average, users changed more than half of their
top-2 selections. The results illustrate the importance of preview
in customization scenarios. From the producer’s perspective, we
conducted separate analyses for simple and complex embroideries.
Assuming we need to select the top-3, 5, or 10 embroidery results
for mass production, our goal is to align these selections as closely
as possible with consumer preferences to maximize potential sales.
To achieve this, we refer to the heatmaps to identify the top-3, 5, 10
candidates. During this process, we observed that the proportions
of changes in selection for simple embroideries were 33.3%, 60.0%,
and 30.0% respectively, while for complex embroideries, the corre-
sponding change rates were 66.7%, 60.0%, and 70.0%. These results
highlight the value of using customized embroidery previews, par-
ticularly in scenarios involving mass production, where aligning
with consumer preferences is crucial.

3.2 Fabrication
Based on the preview and presale statistics, we simulate the digi-
tization and production process for top-ranked embroidery styles.
We select Embroidery-6-Design-1 in Fig. 9, as it exemplifies a range
of stitching styles and ornamental components. We employ Wilcom
EmbroideryStudio to simulate the digitizing process, and the results
are shown in Fig. 8.

With our generated embroidery images, manufacturable files can
be produced through manual tracing. The process is as follows: first,
the image is imported into Wilcom software. Then, the dominant
color tones are extracted from the image and matched to actual em-
broidery thread color codes to ensure accurate color reproduction
during digitization. The image is then resized to the target embroi-
dery dimensions (e.g., 100mm × 100mm) to facilitate real-world
production. Next, a layer-by-layer analysis is conducted, allowing
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Fig. 9. Our embroidery customization results for image-based generation. Pink flower design © Vecteezy.
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Fig. 10. Our embroidery customization results for text-based generation.
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Fig. 11. Embroidery-to-design results and virtual display.

digitizers to manually apply stitch types to each region—for exam-
ple, using Tatami stitches for base fill and Satin stitches for edge
reinforcement. After that, decorative elements such as sequins and
beads are analyzed by measuring their size and color in the image,
and corresponding parameters (e.g., sequin diameter, shape, and
color code) are set in the software to match the real materials. Finally,
the decorations are accurately placed according to the reference
image.

Our generated embroidery images offer the following benefits for
fabrication: First, they can be traced to create manufacturable files,
offering a rapid initialization for subsequent manual refinement and
thereby accelerating the digitization process; second, they support
the preview of diverse design outcomes through random generation,
reducing iterative cycles of digitization and confirmation; third, our
customization can serve as a realistic rendering module, enhancing
the realism of digitized embroidery and facilitating communication
between producers and customers.

3.3 Other Applications
Embroidery Data Generation. We show more customization re-

sults using our method in both image-based and text-based settings.
In Fig. 9 and Fig. 10, we demonstrate the capability of our method
in generating high-quality embroidery data, which can alleviate
challenges posed by data scarcity in this domain.

Design Image Recovery. Our embroidery-to-design module is able
to recover well-aligned design images based on reference embroi-
deries, as shown in Fig. 11 (a). This feature enables extracting design
content from an existing embroidery, facilitating new style synthesis
for this design.

Virtual Display. Our generated embroidery can be overlaid onto
garments, bags, hats, and other items to provide more intuitive and
effective visual previews, through integration with ACE++ [Mao
et al. 2025]. The examples are shown in Fig. 11 (b). Given our gen-
erated embroidery images, ACE++ takes either image or text input
for the target object, and produces the decoration result. For image-
based input, the embroidery can be placed at a specified location;
for text-based input, it is automatically positioned on the generated
object based on the textual description. This application further
assists designers and customers in refining their choices.

4 GENERALIZATION TO OTHER STYLES
We evaluate our method on diverse styles to demonstrate its effec-
tiveness in separating style and content. To achieve this, we conduct
comparisons with prior art on three tasks: artistic style transfer,
sketch colorization, and appearance transfer.

4.1 Photo to Artwork
We first compare to PairCustomization [Jones et al. 2024], which
also learns artistic style from a single image pair. On this task, we
achieve comparable results with PairCustomization on in-domain
style transfer, while slightly better performance for cross-domain
generalization, which demonstrates the efficacy of our method in
style disentanglement. We provide the details as below.

4.1.1 Adaptation and Implementation. We follow PairCustomiza-
tion and use the same pair-wise data construction strategy for fair
comparisons, incorporating both artist-created artworks and images
generated using external stylization methods.

We collect five training pairs, each representing a distinct content
category (e.g., cat, dog, woman, man, landscape) and an associated
visual style (e.g., painted, digital art, posterization, painting, cartoon),
as shown in Fig. 12 and Fig. 13. Specifically, two content-style pairs
("dog" and "man") are provided by PairCustomization. The remaining
three pairs are constructed using SDXL-generated photo content
and stylized with three different techniques, including White-box
Cartoonization [Wang and Yu 2020], Posterization (filter-based), and
Stylized Neural Painting [Zou et al. 2021].
Given a photo-artwork pair, we then apply the similarity met-

ric by analyzing the SDXL model to identify the blocks that are
most correlated to the target artistic style. After that, we apply the
same two-stage contrastive LoRA learning strategy (EmoLoRA) as
described in our embroidery pipeline. For block selection, we choose
3–4 blocks with notably low average cosine similarity to balance the
trade-off between style-content disentanglement and effective style
learning. Our training pairs and the corresponding block selection
results are shown in Fig. 12 and 13, where the selected blocks are
highlighted in red. Using these blocks, we fine-tune the model with
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Table 3. Quantitative comparisons on photo to artwork. Best and second-best results are highlighted in bold and underlined. SDXL results are shown for
reference only and excluded from ranking.

Metric Ours DB-LoRA B-LoRA PairCustomization SDXL

Style (All)↓ 0.158 0.220 0.171 0.183 0.153
Content (All)↓ 0.204 0.274 0.069 0.217 0.000

Style (in-domain)↓ 0.156 0.249 0.181 0.202 0.156
Content (in-domain)↓ 0.214 0.331 0.091 0.254 0.000

Style (cross-domain)↓ 0.160 0.191 0.162 0.163 0.149
Content (cross-domain)↓ 0.193 0.217 0.048 0.179 0.000

paired prompts such as "a photo of a cat" (following PairCustomiza-
tion) and "a photo of a cat in [emb] style", enabling it to capture both
the underlying content structure and the desired stylistic attributes.
The complementary data generation is slightly different from

embroidery, as obtaining style image based on content is easier than
separating content from style image for this task. We generate a set
of new images with different content using the base SDXL model,
and then stylized using the updated model from the first stage to
construct a complementary dataset, which is subsequently used for
the second-stage contrastive learning.
Our inference pipeline follows the same framework as in the

embroidery task. For text-based generation, we use prompts with
"in [emb] style" to guide stylization. For image-based generation,
we employ SDEdit[Meng et al. 2021] to add noise to the input image,
and then apply our model for denoising. To conduct fair compar-
isons with PairCustomization, we do not leverage ControlNets to
preserve content. Rather, we set the timestep to activate trained
LoRA weights, as the hyperparameter for content preservation.

4.1.2 Experiments and Results. Following the experimental setup of
PairCustomization, our evaluation focuses on the text-based gener-
ation setting. The objective is to assess whether the stylized outputs
preserve the structure, semantics, and color characteristics of the
base SDXL model outputs while successfully applying the target
visual style.

Our method is compared against three baselines: DB-LoRA, B-
LoRA, and PairCustomization. DB-LoRA and B-LoRA are trained
solely on the style image, using the prompts "a photo of a cat in
[emb] style" (trained for 400 steps) and "a [emb]" (trained for 1000
steps), respectively. PairCustomization is trained on the same paired
content-style data as ours, following their original implementation
and hyperparameter for both training and inference.
One key observation is that the fidelity of stylized outputs with

respect to the base model is highly sensitive to the specific timestep
at which LoRA is activated. Similar to PairCustomization, we adopt
a controlled LoRA activation strategy during text-based generation.
Specifically, during the early denoising steps (𝑡 > 𝑇𝑠 ), LoRA remains
disabled and only the base content prompt is used. In the later
steps (𝑡 ≤ 𝑇𝑠 ), LoRA is activated alongside the stylized prompt.
This progressive activation helps the model maintain core content
structure while gradually applying the desired style. The activation
timestep 𝑇𝑠 is tuned for each style to achieve an optimal trade-off
between stylization strength and content preservation. For fairness,
the same timestep-controlled strategy is also applied to DB-LoRA

and B-LoRA. Notably, PairCustomization similarly adopts timestep
gating to enhance style-content alignment and further introduces
an inference algorithm that preserves the original denoising path
while injecting controllable style guidance.

Fig. 14 and Fig. 15 illustrate the influence of different LoRA acti-
vation timesteps for a specific style. The figures present the corre-
sponding training data, the output from the original SDXL model,
and the stylized results generated by each method under varying
LoRA activation timesteps. Denoising begins at step 1000. When
LoRA is activated from the very beginning (i.e., at step 1000), all
methods tend to deviate substantially from the pretrained model’s
output, often compromising content fidelity. For each baseline, the
best-performing configuration is selected through qualitative in-
spection based on the trade-off between content preservation and
stylization strength, ensuring a fair and representative comparison.
We present the qualitative comparison results in Fig. 12, Fig. 13.

For each pair, we report both in-domain and cross-domain perfor-
mance (e.g., training on cats while testing on cats and humans)
to evaluate the generalization capabilities of each method across
different content domains.
Our method demonstrates relatively stable performance across

both in-domain and cross-domain scenarios, suggesting stronger
generalization due to better style-content decoupling during train-
ing.
DB-LoRA shows limited ability to disentangle style from con-

tent. Even with timestep control, it often overfits to the style im-
age, leading to content distortion and compromised fidelity. In con-
trast, B-LoRA exhibits relatively weak stylization effects, indicating
difficulties in capturing and transferring subtle artistic attributes.
PairCustomization performs reasonably well on in-domain sam-
ples but struggles to generalize across categories. For example,
when trained on the woman-posterization style, it occasionally fails
to apply the style consistently to cross-category samples such as
dogs—particularly in stylizing salient foreground regions—and also
degrades on landscape scenes (e.g., Fig. 14 and Fig. 13).
In comparison, our method achieves comparable results to Pair-

Customization on in-domain tasks and exhibits more stable behavior
in cross-domain conditions. These results demonstrate the effective-
ness of our contrastive learning framework in promoting consistent
style-content disentanglement, as well as enhancing generalization
across content categories and visual styles.
We adopt the same metric, DreamSim [Fu et al. 2023], as Pair-

Customization to evaluate style consistency with GT and content
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Table 4. Quantitative comparisons on sketch to color.

Metric Ours DB-LoRA B-LoRA ColorizeDiffusionV1.5 ColorizeDiffusionV2 InstantStyle PairCustomization
F1-Score↑ 67.58 54.86 63.55 65.54 68.99 63.42 60.79
Histogram-Loss↓ 43.06 40.10 52.60 46.98 37.71 48.26 56.17

consistency with SDXL generation. As shown in Tab. 3, our method
achieves the best style consistency with relatively low content drift
in both in-domain and cross-domain settings, demonstrating its ef-
fectiveness in disentangling style and content across diverse visual
styles and content categories. Note that these metrics are not fully
aligned with the actual objectives: SDXL scores highest on both,
while B-LoRA largely preserves content, both with minimal style
yet still attain competitive style distance scores.

4.1.3 User Study. We also conducted a user study to quantitatively
evaluate three baseline methods against our proposed approach. To
assess generalization, both in-domain and cross-domain testingwere
performed, following the protocol established by PairCustomization.
For each training pair, we generated 20 in-domain samples and 20
cross-domain samples (five from each of the remaining categories),
forming a test dataset designed to evaluate both style fidelity and
content preservation under varying contexts.
The study followed the same pair-wise comparison protocol as

our embroidery user study. Each of the 20 participants was randomly
assigned 90 sample pairs, consisting of comparisons between our
method and one of the baselines. The comparison frequencies were
balanced across all methods to ensure fairness.
As illustrated in Fig. 7 (d), participants were shown a reference

content-style image pair along with a newly generated content
image in the first row. They were then presented with two stylized
outputs—each generated by a different method—and asked to choose
the one they found more appropriate. This interface is simliart to
the one used in PairCustomization.

The results show that the probabilities of DB-LoRA, B-LoRA, and
PairCustomization being preferred over our method were 29.32%,
7.13%, and 40.04%, respectively. This further supports that our
method achieves a better balance between content preservation
and effective stylization, and demonstrates stronger disentangle-
ment between content and style representations compared to the
baselines.

4.2 Sketch to Color
We also apply our method to sketch colorization, to verify our
capability in decoupling style (color and shading) with content
(semantics and layouts) in this domain. The results suggest that our
method effectively captures the style from a training pair and blends
it compatibly with new content.

4.2.1 Adaptation and Implementation. For pair-wise data construc-
tion, we mimic the content image from sketch by extracting a Canny
edge map from the reference color image. In this way, the content
is roughly defined as semantics and layouts, while the style is the
separated color and shading. We collect four color images, includ-
ing two landscape scenes and two anime characters as in Fig. 17,
and then obtain four color-Canny training pairs. For the similarity

metric, we observe that these pairs exhibit a similar distribution of
average cosine similarity across different attention blocks, suggest-
ing a consistent style-content relationship. Therefore, we adopt the
average among these four pairs as in Fig. 16 (left) and select the four
blocks highlighted in red.
Then we apply our contrastive LoRA learning strategy. For an

example of Canny-color image pair, the corresponding prompts are
"an anime girl" and "an anime girl in [emb] style", respectively. After
completing the first-stage training, we generate complementary
data in stylized outputs using diverse content prompts. Canny edge
maps are then extracted from these outputs and paired with their
corresponding stylized images to form an augmented dataset. This
dataset is subsequently used in the second training stage to improve
content-style disentanglement through contrastive learning.

During inference, we employ ControlNet-Canny to preserve the
content of the input sketch. The generation is guided by prompts
such as "a landscape in [emb] style" or "an anime girl in [emb] style",
depending on the target content, for text-based synthesis. This setup
enables the model to perform sketch colorization while maintaining
accurate structural alignment with the original sketch.

4.2.2 Experiments and Results. Evaluation is conducted under both
in-domain (e.g., training and testing on similar content such as
anime sketches) and cross-domain (e.g., training on landscapes while
testing on anime sketches) settings.
We compare our method against several baselines: DB-LoRA

and B-LoRA, which are trained solely on reference style images
using the prompts "an anime girl in [emb] style" (400 steps) and "a
[emb]" (1000 steps), respectively; InstantStyle [Wang et al. 2024],
which directly inputs the reference image for style transfer with an
IP-Adapter; and PairCustomization, which is trained on the same
Canny–color image pairs and evaluated using their ControlNet-
Canny inference pipeline. For compatibility with the setting and
claims in PairCustomization, the style prompt "[emb]" is replaced
with "colorful" in their training. All baselines are evaluated on
the same test sketches using consistent ControlNet settings. Addi-
tionally, we include two state-of-the-art sketch colorization mod-
els—ColorizeDiffusionV1.5 [Yan et al. 2025b] and ColorizeDiffu-
sionV2 [Yan et al. 2025a]—with their publicly released weights and
inference pipelines.

As shown in Fig. 17, qualitative comparisons highlight key differ-
ences across methods. Our approach successfully handles the sketch
colorization task by effectively transferring both color and shading
styles. It achieves a strong balance between structural preservation
and stylistic consistency across both in-domain and cross-domain
settings.

In contrast, DB-LoRA, although capable of capturing the reference
color style, often suffers from content leakage. For instance, in the
fifth row of Fig. 17, the short hairstyle in the sketch is incorrectly
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Table 5. Quantitative comparisons on appearance transfer.

Metric Ours (a) Ours (b) DB-LoRA Attention Distillation Cross-Image Attention InstantStyle
Struct.-Preservation↑ 0.937 0.902 0.788 0.872 0.825 0.943
Appearance-Fidelity↓ 1.220 1.096 1.545 1.001 1.101 1.311

replaced with the long hairstyle from the reference image, indicating
that the model has overfitted to both the style and content of the
reference.
B-LoRA, InstantStyle, and PairCustomization frequently show

color drifts and fail to maintain coherent stylistic features. Col-
orizeDiffusionV1.5 and V2 exhibit reasonably good performance
on in-domain anime characters, probably due to their large-scale
training on animation-style datasets. However, their generalization
to cross-domain scenarios—such as transferring landscape colors
to character sketches or even landscape-to-landscape stylization—
remains limited, often producing visually unnatural results.

These observations confirm that ourmethod not only captures the
style characteristics of color and shading effectively, but also benefits
from style-content disentanglement, allowing it to generalize well
to new sketches. This results in stylized outputs that preserve the
input semantic structure while faithfully reflecting the reference
style, even under cross-domain conditions.
We further evaluate structural similarity using the F1-Score be-

tween the Canny edges of the generated image and the input sketch,
and color consistency using Histogram-Loss with the reference im-
age, shown in Tab. 4. Although ColorizeDiffusionV2 achieves the
best quantitative scores, it is trained on 6.5 million images, whereas
our method is trained on a single image at test time. Importantly, our
approach produces more natural colorization in cross-domain sce-
narios (e.g., landscapes to portraits), demonstrating a better trade-off
between structure preservation and style fidelity. DB-LoRA, despite
achieving lower Histogram-Loss, exhibits content leakage due to in-
sufficient color-content disentanglement, which negatively impacts
structural consistency.

4.3 Appearance Transfer
We extend our method to transfer more complex visual attributes,
specifically texture, in appearance transfer, a task akin to sketch
colorization but with richer styles and looser structural constraints.
The results demonstrate our method’s ability to capture appearance
features while disentangling them from structural content using
selected style blocks.When all blocks from our trained EmoLoRA are
used, the structural content of the reference can also be compatibly
blended with the target structure.

4.3.1 Adaptation and Implementation. For pair-wise data construc-
tion, we adopt similar setting as in sketch colorization, and extract
Canny maps from reference appearance to obtain content images.
Thus the content is also defined as the fine-grained structural infor-
mation, containing layouts and semantics. As a result, the style is
defined as the rich appearance features aside from the content.

We construct four appearance-Canny training pairs, sourced from
photorealistic images with rich appearance features. Then we then
compute the average cosine similarity of their attention features,

and observe similar patterns as sketch colorization. Two image pair
examples and the averaged similarity heatmap are shown in Fig. 16
(right), and we select the same four blocks for appearance as for
color.
Based on the pair-wise data and selected attention blocks, we

apply our EmoLoRA with paired prompts such as "a photo of a cake"
and "a photo of a cake in [emb] style". Different from previous tasks,
the second-stage contrastive learning here must avoid introducing
additional appearance cues from cross-category or cross-instance
content, as this could alter the intended style.
Therefore, we generate image variants using the same training

prompts, introducing slight perturbations to the reference image to
avoid injecting extraneous appearance features. Canny edge maps
are then extracted from these variants to form consistent pairs for
contrastive learning.

During inference, we adopt our image-based generation pipeline
with ControlNet-Canny. The content structure is obtained through
extractingHED[Xie and Tu 2015] edgemaps from input structure im-
ages, as HED maps preserve the rough outline structures of content
images while removes fine-grained elements like fur or repetitive
textures. We add noise to the input structure image with SDEdit
and send the corresponding HED map to ControlNet-Canny, along
with prompts like "a photo of a cake in [emb] style", to generate the
final output image.

4.3.2 Experiments and Results. We compare our method with sev-
eral baselines. DB-LoRA is trained solely on the reference image
using the same prompt and 400 training steps. InstantStyle inputs
the appearance reference directly to an IP-Adapter during inference.
Both methods adopt the same ControlNet inference configuration
as ours to ensure fair comparison. Attention Distillation [Zhou et al.
2025] is reproduced according to the authors’ official setup, where
the reference and content images are optimized jointly using a con-
tent loss weight of 0.2 over 200 steps. Cross-Image Attention [Alaluf
et al. 2024] is evaluated with its default settings.

As shown in Figure 18, our method achieves more faithful appear-
ance transfer while preserving structural consistency. Two inference
settings highlight the level of style-content disentanglement of our
approach: Ours(a) uses only the selected style blocks, and success-
fully transfers the reference appearance while introducing little
additional structures; in contrast, Ours(b) activates all EmoLoRA
blocks during inference, smoothly blending the reference appear-
ance and structure into the target structure specified by the HED
maps.

In the Taj Mahal example, Ours(a) accurately captures the white
stone texture without distorting the target HED structure, whereas
Ours(b) introduces dome-like features from the reference, resulting
in a result of both appearance transfer and structure "augmentation".
Similarly, in the third example featuring a car, Ours(a) transfers the
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color and gloss of the car paint, while Ours(b) additionally incor-
porates structural elements such as the rear wing and taillights,
demonstrating its ability to transfer appearance and augment struc-
ture with decoupled style and content representations.
Although DB-LoRA employs the same block configuration as

Ours(b), it fails to integrate appearance and structure coherently due
to the absence of disentanglement training, leading to structural arti-
facts. This contrast underscores the effectiveness of our contrastive
learning strategy in decoupling style and content within LoRA
blocks. Attention Distillation often produces incomplete shapes
and unnatural blending, suggesting that it struggles to balance ap-
pearance and structure during transfer. Cross-Image Attention suf-
fers from low visual fidelity and introduces noticeable artifacts.
InstantStyle fails to capture the fine-grained appearance features
of the reference and frequently yields semantically inconsistent
results.
We use the same metrics as Cross-Image Attention, measuring

structure preservation via IoU of foreground masks and appearance
fidelity via Grammatrix differences. As shown in Tab. 5, our method
achieves a balanced trade-off between structure and appearance:
Ours(a) attains high structure preservation while maintaining com-
petitive appearance fidelity, indicating effective style-content dis-
entanglement. Ours(b) further improves appearance transfer while
still preserving the structure reasonably well, demonstrating a al-
ternative overall balance.

These comparisons demonstrate that our training framework not
only successfully separates appearance from structure in the se-
lected style blocks, but also achieves better integration with new
structures using all blocks, thanks to the inherently more disentan-
gled representations.

5 PROMPTS FOR EMBROIDERY GENERATION
In this section, we provide the prompts used for embroidery gener-
ation, in complementary data generation and text-based evaluation.

5.1 Prompts for Complementary Data Generation
For complementary data generation, we preset 10 prompts for all
references:

(1) "A yellow dog in [emb] style",
(2) "A silver robot in [emb] style",
(3) "A red car in [emb] style",
(4) "A yellow train in [emb] style",
(5) "A green house in [emb] style",
(6) "A blue boat in [emb] style",
(7) "A brown horse in [emb] style",
(8) "A blue bird in [emb] style",
(9) "A green tree in [emb] style",
(10) "A pink rose in [emb] style".

5.2 Prompts for Text-based Generation
For text-based generation, we preset 20 prompts. With each prompt,
we generate two random results for ours, DB-LoRA [Ryu 2022]
and B-LoRA [Frenkel et al. 2025]. Since our EmoLoRA effectively
decouples embroidery style from image content, including semantic
layout, our text-based embroidery generation is dependent on the

original text-to-image generation of SDXL base model. To make
the generation more friendly for embroidery production, we add
"simple background, white background" to all prompts. We list the
prompts as follows:

(1) "A patch of a dog in [emb] style",
(2) "A patch of a cat in [emb] style",
(3) "A patch of a car in [emb] style",
(4) "A patch of a house in [emb] style",
(5) "A patch of a panda in [emb] style",
(6) "A patch of a fox sitting by a campfire in [emb] style",
(7) "A patch of a dragonfly hovering over a pond in [emb] style",
(8) "A patch of a rocket ship flying through stars in [emb] style",
(9) "A patch of a cactus in a colorful pot in [emb] style",
(10) "A patch of a penguin sliding on ice in [emb] style",
(11) "A patch of a sunflower blooming under a rainbow in [emb]

style",
(12) "A patch of a butterfly resting on a flower in [emb] style",
(13) "A patch of a dolphin jumping out of the ocean in [emb] style",
(14) "A patch of a rabbit holding a carrot in [emb] style",
(15) "A patch of an owl perched on a moonlit branch in [emb]

style",
(16) "A patch of a raccoon peeking out of a trash can in [emb]

style",
(17) "A patch of a unicorn standing on a cloud in [emb] style",
(18) "A patch of a flamingo standing in a pond in [emb] style",
(19) "A patch of a hedgehog holding an apple in [emb] style",
(20) "A patch of a snail with a colorful shell in [emb] style".
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Fig. 12. Artistic style transfer results on in-domain and cross-domain cases. Top: The "Cat–Painted" training pair and corresponding feature similarity analysis
on SDXL. The second row shows in-domain stylization (cat) and cross-domain generalization (man) using different methods. Bottom: The "Landscape–Cartoon"
training pair and SDXL feature analysis. We present stylization results for in-domain (landscape) and cross-domain (dog) cases.
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Fig. 13. Artistic style transfer results on in-domain and cross-domain cases. Top: The "Woman–Poster" training pair and SDXL feature analysis, along with
stylization results for in-domain (woman) and cross-domain (landscape) examples. Bottom: The "Man–Painting" training pair and corresponding SDXL feature
analysis. We show stylization results for in-domain (man) and cross-domain (cat) cases. The man training data © PairCustomization [Jones et al. 2024].
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Fig. 14. Impact of LoRA activation timesteps. We show the training data, the generation from SDXL, and stylized results at different LoRA activation timesteps.
The optimal timestep for each method is highlighted.
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Fig. 15. Impact of LoRA activation timesteps. Comparison of stylized outputs at various LoRA activation steps for a cross-domain (landscape) example.

Fig. 16. Training pair examples and attention-based block selection for sketch colorization and appearance transfer. Left: Two training pair examples from the
task of sketch colorization, along with the averaged similarity heatmaps. Right: Two training pair examples from the task of appearance transfer, along with
the averaged similarity heatmaps.
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Fig. 17. Qualitative comparison on the sketch colorization task. All anime character images are generated using the FLUX [Labs 2024] model.
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Fig. 18. Qualitative comparison on the appearance transfer task.
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